Mixed Sum-Product Networks: A Deep Architecture for Hybrid Domains
نویسندگان
چکیده
While all kinds of mixed data—from personal data, over panel and scientific data, to public and commercial data—are collected and stored, building probabilistic graphical models for these hybrid domains becomes more difficult. Users spend significant amounts of time in identifying the parametric form of the random variables (Gaussian, Poisson, Logit, etc.) involved and learning the mixed models. To make this difficult task easier, we propose the first trainable probabilistic deep architecture for hybrid domains that features tractable queries. It is based on Sum-Product Networks (SPNs) with piecewise polynomial leaf distributions together with novel nonparametric decomposition and conditioning steps using the Hirschfeld-Gebelein-Rényi Maximum Correlation Coefficient. This relieves the user from deciding a-priori the parametric form of the random variables but is still expressive enough to effectively approximate any distribution and permits efficient learning and inference. Our experiments show that the architecture, called Mixed SPNs, can indeed capture complex distributions across a wide range of hybrid domains.
منابع مشابه
Sum-Product Networks for Hybrid Domains
While all kinds of mixed data—from personal data, over panel and scientific data, to public and commercial data—are collected and stored, building probabilistic graphical models for these hybrid domains becomes more difficult. Users spend significant amounts of time in identifying the parametric form of the random variables (Gaussian, Poisson, Logit, etc.) involved and learning the mixed models...
متن کاملLearning the Architecture of Sum-Product Networks Using Clustering on Variables
The sum-product network (SPN) is a recently-proposed deep model consisting of a network of sum and product nodes, and has been shown to be competitive with state-of-the-art deep models on certain difficult tasks such as image completion. Designing an SPN network architecture that is suitable for the task at hand is an open question. We propose an algorithm for learning the SPN architecture from...
متن کاملLearning Relational Sum-Product Networks
Sum-product networks (SPNs) are a recently-proposed deep architecture that guarantees tractable inference, even on certain high-treewidth models. SPNs are a propositional architecture, treating the instances as independent and identically distributed. In this paper, we introduce Relational SumProduct Networks (RSPNs), a new tractable first-order probabilistic architecture. RSPNs generalize SPNs...
متن کاملAccessibility Evaluation in Biometric Hybrid Architecture for Protecting Social Networks Using Colored Petri Nets
In the last few decades, technological progress has been made important information systems that require high security, Use safe and efficient methods for protecting their privacy. It is a major challenge to Protecting vital data and the ability to threaten attackers. And this has made it important and necessary to be sensitive to the authentication and identify of individuals in confidential n...
متن کاملAccessibility Evaluation in Biometric Hybrid Architecture for Protecting Social Networks Using Colored Petri Nets
In the last few decades, technological progress has been made important information systems that require high security, Use safe and efficient methods for protecting their privacy. It is a major challenge to Protecting vital data and the ability to threaten attackers. And this has made it important and necessary to be sensitive to the authentication and identify of individuals in confidential n...
متن کامل